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Abstract 

Frequency modulation (FM) information from the speech 

signal is herein proposed to complement the conventional 

amplitude based features for automatic forensic speaker 

recognition systems. In addition to presenting the AM-FM 

model of speech used to generate the proposed frequency 

modulation features, the significance of frequency modulation 

for speaker recognition is discussed. Evaluation results from 

an automatic forensic speaker recognition system combining 

FM and MFCC features are shown to out-perform those of a 

system employing MFCC features alone, in terms of all 

typical metrics, such as detection error trade-off curves, 

Tippett curves and applied probability of error curves.  

Index Terms: frequency modulation, automatic forensic 

speaker recognition. 

1. Introduction 

Expert opinion may be required about a recording from a 

crime scene relating to the suspect in judicial proceedings. In 

that situation automatic forensic speaker recognition (FSR) 

system can be used by a forensic scientist to produce a 

meaningful estimate of the strength of the evidence 

(information extracted from the questioned recording) in the 

form of Likelihood Ratio (LR). To accomplish this task, the 

front-end of the automatic FSR system should utilize all 

possible information from the speech signal. Studies of 

human auditory perception suggest that frequency modulation 

information from the speech signal is complementary to the 

conventional amplitude based features such as MFCC. 

Psychophysical evidence for the existence of human 

auditory pathways tuned to frequency modulated tones was 

first reported in [1]. Further experiments, supporting the 

claim that information pertaining to changes in amplitude and 

information pertaining to changes in frequency are processed 

in separate psychophysical channels, are reported in [2]. 

While these findings reveal that frequency modulation plays a 

significant part in human perception, several sources of 

evidence for the existence of frequency modulation in the 

speech signal are reported in [3], based on vocal tract air 

velocity measurements conducted in [4]. Further, a model for 

the speech signal, incorporating this frequency modulation 

information in terms of an AM-FM model, was also proposed 

in [3] as an AM-FM model. Later, several human perception 

experiments showed that an FM signal, combined with 

amplitude information, enhanced human perception [5, 6]. 

Further, the FM properties of the speech signal have been 

successfully exploited in cochlear implant applications [7], 

automatic speech recognition [8] and automatic speaker 

recognition [9], in each case as a complement to amplitude 

information. Thus, there is a significant and diverse body of 

research to support the notion that FM components in the 

speech signal provide complementary information to 

amplitude information in features such as MFCCs.  

The primary motivation for using FM features for speaker 

recognition is the explanation for the modulation observed in 

the speech signal in [3], based on Teager’s experiment. In 

particular, “the air jets flowing through the vocal tract during 

speech production is highly unstable and oscillates between 

its walls, attaching or detaching itself, and thereby changing 

the affected cross-sectional areas and air masses, which 

affects the frequency of the cavity resonator” [3]. It is the 

vocal tract walls that cause the modulation of the oscillating 

air flow, thus the modulation in speech can be expected to 

carry speaker-specific information. In addition to this, the 

initial volume and mass of the air flow entering through the 

vocal cord depends on the size and properties of the vocal 

cord, thus it can be assumed to contain speaker-specific 

information. Further, using cochlear implant subjects, a 

speaker recognition experiment [5] comparing AM only and 

AM+FM found that the performance is improved with FM. 

This experiment also showed that the FM contains speaker-

specific information.  

Based on the above motivations, we propose to use FM 

components from speech to improve the performance of an 

automatic FSR system. Evaluation of the FM features, 

MFCCs and the combination of both on the NIST 2001 

cellular database shows that FM can be used to improve the 

performance of the automatic FSR system. 

2. Frequency Modulation of Speech 

2.1. AM-FM Model 

Based on Teager’s [4] experimental findings of the existence 

of modulations in speech, the resonances are each modeled as 

AM-FM signals in [10]. Then the total speech is taken as the 

sum of all the resonances as given in equation 1.  
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where K is the total number of resonances, Ak[n] is the 

time-varying amplitude component, qk[r] is the time-varying 

frequency component, fck is the center frequency of the 

resonance, fs is the sampling frequency and θ is the initial 

phase. This model is the basis for FM extraction from speech.  

2.2. FM Feature Extraction from Speech 

In this work, long term average FM features are extracted 
over a 20 ms window length using the second-order all-pole 
method [9]. In this method, the speech is initially filtered 
using Bark scaled Gabor band pass filters. Then each sub 
band signal is approximated as the impulse response of a 
second order resonator, from which the pole frequency is 
estimated. From the pole frequency, taken as an estimate of 
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the instantaneous frequency, the FM component is calculated 
by subtracting the center frequency of the sub band. The 
block diagram for the FM extraction is given in Figure 1. As 
the database used is a cellular database, 14 filters ranging 
from 300 Hz to 3400 Hz are used.  

In principle, it is possible to decompose the speech signal 
into components due to each resonance, instead of using fixed 
bandwidth band pass filters, however in practice formant 
(resonance) tracking approaches pose two problems for 
speech front-ends: (i) formant tracking is imperfect, and 
inaccuracies in formant frequency estimates cause problems 
in the resulting FM extraction; and (ii) in most pattern 
recognition approaches, a fixed-dimension feature vector is 
required, while the number of formants (and hence the feature 
dimension) may vary for a fixed bandwidth. These problems 
were presumably also anticipated by the fixed six-band Mel-
spaced Gabor filter bank proposed in the AM-FM front-end 
of [8] for speech processing.  
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Figure 1. Block diagram of FM feature extraction 

2.3. Demonstration of the Significance of FM 

A speech signal was reconstructed using AM components 
only and using both AM and FM from a speech signal in the 
NIST 2001 database, to observe the effect of FM. For the 
AM-only reconstruction, the FM was set to zero, as in 
equation (2), and for the AM-FM reconstruction, the model in 
equation (1) was used. 
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Figure 2. Spectrogram of a speech signal from NIST 2001 

database (a) Original speech (b) Reconstructed speech from 

AM only, and (c) Reconstructed speech from AM and FM.  

The formant transitions are much clearer in the 
spectrogram of speech reconstructed using AM and FM (Fig. 
2(c)) compared with the spectrogram of speech reconstructed 

using AM only (Fig. 2(b)). Almost perfect reconstruction is 
obtained with AM and FM. This observation, for a real 
speech signal, is consistent with the previous analysis using 
synthetic syllables [7]. 

Further, the FM variation for two speakers for a vowel 
sound /o/ is shown in Figure 3 for seven sub bands, where the 
FM frequency has been offset from the band center 
frequencies. This figure shows the ability of FM for speaker 
discrimination, particularly the top band (centered at 3400 
Hz) and the bottom band (centered at 450 Hz) produce more 
discrimination. This figure, together with the observation 
from Figure 2 that the formant transitions are carried by FM, 
suggests that FM carries mostly the same  information as the 
traditional F-patterns used in [11]. However, further research 
is required to support this claim. 
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Figure 3. FM variation for a vowel sound /o/ for two 

speakers for seven bands. 

3. Automatic Forensic Speaker 

Recognition System 

The automatic FSR system used in this paper is based on a 
Bayesian interpretation, having a two-stage modeling 
approach [12, 13]. In the first stage, the acoustic features are 
modeled using Gaussian mixture models (GMMs) similar to 
the conventional automatic speaker recognition used in NIST 
evaluations. In the second stage, the scores of the within-
source (intra-speaker variation of suspect) and scores of the 
between-source (inter-speaker variation of the potential 
population) are used to model the within-source and between-
source distributions. In this paper, the within-source 
distribution is modeled by a Gaussian distribution and the 
between-source distribution is modeled by a kernel density 
estimation approach similar to [14]. Finally, the LR estimate 
of the automatic FSR system is calculated as in equation (3) 
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where E is the evidence, H0 is the hypothesis that the 

evidence was spoken by the suspect, H1 is the hypothesis that 

the evidence was not spoken by the suspect and I is the 

related background information. 

For this experiment, the cellular NIST 2001 database was 

used. It consists of 174 target speakers with 1038 test 

segments recorded under different environmental conditions. 

Each test segment is considered to be the questioned 

recording, and the corresponding claimed speaker is 

considered to be the suspect. All speakers in the training data 

other than the suspect are considered as the potential 

population (P), and all the test segments from the suspect 

other than the test segment considered are taken as the suspect 

control database (C). The training data of the claimed speaker 

is considered to be the suspect reference database (R). The 

block diagram of the automatic FSR system is given Figure 4. 
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Figure 4. Block diagram of automatic forensic speaker recognition system. 

 

3.1. Performance Measures and Calibration 

We used conventional performance measures, such as Tippett 
plots [13] and Detection Error Trade-off (DET) curves as 
performance measures. In addition, we calculated Cllr, the 
application-independent evaluation metric proposed by 
Brümmer [15]. A brief summary of the performance measure 
proposed in [15] is given below. 

The speaker recognition system can be decomposed into 

two stages: (i) the extraction stage and (ii) the presentation 

stage. The extraction stage is completed with the likelihood 

obtained using the block diagram in Figure 4. Then the 

presentation stage makes the likelihood ratio directly 

interpretable as a log likelihood ratio, and is achieved by 

calibration. In our experiment, logistic regression is used for 

calibration as used in [16]. 

The quality of the extraction stage is measured by the 

discrimination loss (Cllr
min) and the quality of the presentation 

stage is measured by the calibration loss (Cllr
cal), while the 

sum of these two losses is Cllr [15]. Cllr is calculated using 

equation (4) [15], where N0 is the number of trials 

corresponding to hypothesis H0 and N1 is the number of trials 

corresponding to hypothesis H1. 
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Then (Cllr
min) is calculated using LR values calibrated 

using the algorithm of pair-adjacent violators (PAV). This 

PAV algorithm is a non parametric perfect calibration (with 

zero calibration loss), thus Cllr
min measures the quality of the 

extraction stage. For an ideal system Cllr
min, Cllr

cal, and Cllr are 

zero. In real systems, smaller values indicate a better system. 

Further, a graphical way of presenting these performance 

measures as applied probability of error (APE) curves [15] is 

also used in this experiment. The FoCal toolbox is used in 

this experiment to calculate these performance measures 

(http://www.dsp.sun.ac.za/~nbrummer). 

4. Experiment 

In this experiment, 12-dimensional MFCCs, 14-dimensional 
FM features [9] and the concatenation of both were used. 
Feature warping and TNorm were performed in all three 
cases. Feature-level concatenation of MFCC and FM was 
preferred to score-level fusion of the individual sub-systems, 
since it can use the joint distribution between MFCC and FM. 
Although the feature dimensions are assumed independent, 
the correlation among them is not strictly zero in practice. 
Usually diagonal covariance is used in GMM-based speaker 
modeling (although in such cases the correlation information 

modeled by a full covariance matrix can be equally captured 
using a higher number of mixtures together with diagonal 
covariance matrices [17]). 

The DET curves for the automatic FSR system are shown 

in Figure 5, where the combined MFCC and FM improve the 

error rate. Tippett plots of the un-calibrated and calibrated 

systems are shown in Figure 6 and 7 respectively, where the 

combined MFCC and FM produce more separation compared 

with MFCC in both cases. It is worth noting that the 

calibration will not change the DET curves, as calibration 

only improves the presentation of the information extracted 

by the system. This system was calibrated using an affine 

transformation with a logistic regression objective as per [16], 

using the FoCal toolbox. For calibration training, 10% of the 

database was used. The Cllr related performance is given in 

Table 1. Not only the discrimination loss but also the 

calibration loss of the calibrated automatic FSR system is 

improved by combining FM with MFCC. In particular, the 

calibration loss of FM is less than that of MFCC, showing 

that the FM is better in the presentation stage. Again, the 

discrimination loss will not be changed by calibration. An 

APE curve for the calibrated system is shown in Figure 8. The 

height of the light portion of the bar chart is the area under the 

solid curve (error-rate of the PAV optimized score) and the 

height of the complete bar chart is the area under the dotted 

curve (error rate of the calibrated system). The dashed curve 

is the error-rate of the neutral system [15]. 

 
Figure 5. DET curves for the automatic FSR system 

5. Conclusion 

We have successfully utilized frequency modulation for 

automatic FSR system to complement MFCC, supporting the 

psychophysical evidence that FM is a significant component 



in human perception. The combination of MFCC and FM as a 

feature gave reduced error rates in terms of DET curves, more 

separation in terms of Tippett plots and produced smaller 

discrimination and calibration loss in terms of Cllr
min and Cllr

cal 

respectively. The finding that the calibration loss of FM is 

better than that of MFCC shows the capability of FM in 

automatic FSR. The importance of using FM for speaker 

recognition is also demonstrated. As future work we are 

investigating the performance of automatic FSR system using 

recent NIST databases such as NIST 2006 with channel 

compensation such as nuisance attribute projection (NAP) in 

the stage one and recently proposed suspect adapted [16] 

within source modeling in the second stage. 

 
Figure 6. Tippett plots of the un-calibrated automatic FSR 

system. 

 
Figure 7. Tippett plots of the calibrated automatic FSR 

system. 

 
Figure 8. Applied probability of error curves of the 

calibrated automatic FSR system. 

Table 1. Calibration loss and discrimination loss for the 

calibrated automatic FSR system. 

 Calibration loss 

(Cllr
cal) 

Discrimination loss 

(Cllr
min) 

FM 0.0514 0.5027 

MFCC 0.0707 0.4452 

MFCC+FM 0.0665 0.3848 
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