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Abstract

A new method for speaker verification based on formant fea-
tures is presented. A UBM-GMM verification system is applied
to semi-automatically extracted formant features. Speaker-
specific vocal tract configurations, including the speakers’ vari-
ability, are incorporated in the speaker models. Speaker com-
parisons are expressed as likelihood ratios (the ratio of similar-
ity to typicality). F1, F2 and F3 values all enable speakers to
be distinguished with a low error rate. The corresponding band-
widths further lower the error rate.

Index Terms: speaker recognition, Gaussian Mixture Models,
Formants

1. Introduction

During recent years, automatic speaker verification systems
based on the Gaussian Mixture Model (GMM) framework have
been continuously developed and improved. However, appli-
cation in the forensic domain is still problematic. Lack of in-
terpretation of the features and models used, as well as of the
meaning of the outcome is one main disadvantage when pro-
viding evidence evaluation for the court. On the other hand,
acoustic-phonetic expertise by experts has its drawbacks as
well, for example the huge amount of time needed for such ex-
pertise. Formant features (i. e. formant center frequencies and
formant bandwidths) are widely accepted features used in foren-
sic acoustic-phonetic speaker verification. These features can
be related directly to the resonance cavities in the vocal tract
and thus provide a theoretically founded interpretation frame-
work which can be used to compare speech samples. In the new
approach presented in this paper, formant features are modeled
using multivariate Gaussian Mixture Models. These models
represent the vocal tract characteristics of speakers, account-
ing for within-speaker variability. We present a framework for
automatic formant feature modeling where speech sample com-
parisons are expressed as a likelihood ratio.

2. Speaker Recognition System

In a case study, Nolan and Grigoras investigated fundamental
frequencies and formant frequencies for a speaker verification
task [1]. As already concluded from a detailed, phoneme-based
comparison, the arrangement of long-term formant distributions
(LTF distributions) lead to the rejection of the suspect. In this
approach, formant frequencies were measured and the distri-
butions estimated via Gaussian kernel density estimation. The
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Figure 1: Example Comparison of LTF (F1, F2 and F3 density
estimations in bold, means in dotted lines)

case study described in [1] used plots as shown in Figure 1 to
compare the LTFs. However, in [1], there was only one com-
parison made and the authors found a big difference in the for-
mant means. For rejection of speakers, this method might be
sufficient if there are big enough differences in the means, but
as one might guess from Figure 1, and as Nolan and Grigoras
pointed out:

There may also be useful information in the shape
of the distribution of the estimates for each for-
mant [...].
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Grigoras extended this approach to compute likelihood ratios
based on the density estimations of formant frequencies on dis-
tinct vowel phonemes ([a], [e], [i], [o]) as well as on LTFs [2].
Also, Rose [3] proposed the comparison of vowel phonemes
by likelihood ratio computation. In many forensic cases, the
expert has to deal with insufficiently described languages, and
hence an investigation of vowel phonemes might be difficult.
The advantage of the LTF distributions as shown in Figure 1 is
that one does not have to distinguish phonemes and is thus time-
independent and text-independent. The remaining question is:
how can we compute similarities from LTF distributions?

One problem is that formant features like F1, F2, F3, as well
as the corresponding bandwidths, are usually not independent
from each other [3] [4] [5]. If they would be modeled separately
in a Bayesian framework, the resulting likelihood ratio scores
could not be combined since they would be based on dependent
variables. This is of great importance in forensics, where corre-
lated evidence has to be avoided. Hence, our approach models
the distribution of multidimensional feature vectors using the
well known UBM-GMM framework [6] which has been suc-
cessfully applied to cepstral feature vectors. Like the approach
of Nolan et al. [1] and Grigoras [2], the order of the features is
ignored by assuming statistical independence.
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Figure 2: Bivariate GMM for F2 and F3 based on 8 mixture
components (density shown on z-axis)

We start by extracting a set of feature vectors for every speaker
recording
X =A{z1,...,zn}, (H

where every vector
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is a feature vector of length d. The training feature sets were
used for speaker model generation. This was accomplished as
follows:

The d-variate Gaussian function is given by
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where p is the mean and X is the covariance matrix. d can be
any positive integer whose value is determined by the number
of features incorporated into every feature vector. A Gaussian
mixture density is a weighted sum of M Gaussian distribution
functions f(x; i, Xs)
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where p; > 0 are the mixture weights. Therefore a GMM con-

sisting of M Gaussians can be specified by
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Here, (pi, 1i,2:) is a tuple consisting of the model parame-
ters, while M is the number of components or mixtures. Every
distribution of d-variate feature vectors can thus be described
by A. Full covariance matrices are used to model correlations.
This enables us to model the within-speaker variability, see for
example Figure 2, where a bivariate GMM based on 8 mix-
ture components is shown. The peaks on the z-axis represent
the most frequent F2-F3 configurations, while the shape of the
structure reflects the variabilities. For every training recording,
a GMM is generated, representing the speakers’ typical formant
feature distributions. Additionally, a universal background mo-
del (UBM) is created, based on a collection of feature vectors
from many different speakers. The UBM represents the refer-
ence population. The free statistical software R [7] was used
for the model generation, using the mclust [8][9][10][11] pack-
age. Similarities of feature vectors X from one speaker and a
speaker model A are expressed by the likelihood, the product
of the Gaussian mixture density (see Equation 4). For a set of
feature vectors X (see Equation 1) and a speaker model A (see
Equation 5), the likelihood that the feature vectors come from
this model is measured via computation of

n

P(X [N = [T SN, 6)
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where f(x; | A) is the Gaussian mixture density function for
the specified model .

Every speaker verification test is a comparison of the likelihood
of the test feature vectors in the speaker model and the UBM.
This is expressed in the likelihood ratio

_ P(X ‘ Aspeaker)

LR = P(X | Augm) @

The likelihood for Agpeater represents similarity, while Aypm rep-
resents typicality. Thus a high likelihood ratio supports the
hypothesis that the test feature vectors come from the same
speaker while a low likelihood ratio supports the hypothesis that
the test feature vectors come from different speakers. For nu-
merical reasons, the log likelihood ratio was computed.



3. Data Base

68 male adult German speakers from the Pool 2010 corpus [12]
were used for the experiment. In this corpus, read and spon-
taneous speech was elicited in a neutral condition, a telephone
condition and a Lombard condition. The present study focuses
on spontaneous speech in the neutral condition. Spontaneous
speech was obtained within a laboratory setting by letting sub-
jects describe a series of pictures in a dialog situation where
they had to avoid certain words. In order to make the recordings
more realistic forensically, they were played and transmitted
through real mobile phone connections. The resulting record-
ings were edited by hand to eliminate all consonantal informa-
tion and other speech portions where the formant structure was
unclear. Formant tracking by peak picking was applied to this
edited material. Any remaining tracking errors were manually
corrected and plausibility was checked. These procedures were
applied with the Wavesurfer [13] software. The signals were
downsampled to 8 kHz. The LPC analysis was set to find 4
formants (only the first three were used due to the telephone fil-
tering, which made F4 unreliable'), the analysis window length
(Hamming window) was at 0.049 seconds, the LPC order was
12, the preemphasis factor was 0.7, and values were obtained
every 10ms. The method described here corresponds to LTF
analysis (long-term distribution of LPC formant estimates) as
proposed in [1]. As pointed out in [1], LTF analysis can capture
anatomical vocal tract characteristics as well as habitual speaker
specifics, such as a palatalized setting and other supralaryngeal
voice qualities. A practical advantage of LPC analysis is that it
can be applied to languages not spoken by the expert, since no
segmentation into phonological units is necessary.

The training set was created by using the first half of the for-
mant measurements for every speaker recording, while the test
set was generated by using the second half of the formant mea-
surements. Additionally, the test feature vector sets were halved
to increase the number of comparisons. The signal duration of
the used signal for the training set was about 22 seconds and
about 11 seconds for the test set. This can be considered as a
plausible scenario in forensic case work regarding bandwidth
limiting and signal duration. Henceforth, the formant center
frequency features will be abbreviated to F1, F2 and F3, and the
corresponding bandwidth features to BW1, BW2 and BW3.

18 speaker measurements were used to create the Universal
Background Model (UBM) by pooling all formant features to-
gether and estimating one GMM to represent the reference pop-
ulation. The number of mixtures was M = 8 for both UBM
and single speaker models. This value was determined exper-
imentally. The speaker features from the remaining 50 speak-
ers were used for the tests. In total, there were 100 x 50 =
5000 tests, 100 same-speaker comparisons and 4900 different-
speaker comparisons. Every comparison resulted in a likelihood
ratio score. The equal error rates were computed and a Detec-
tion Error Tradeoff plot (DET plot) [15] was created.

4. Results and Discussion

To investigate the contribution of the six different features ob-
tained, several feature vectors with different dimensionality and
formant features were used and compared. The resulting equal

INote, however, that the measurements of F1 might be affected by
the telephone transmission as well [14].

error rates are listed in Table 1, and the corresponding DET plot
is shown in Figure 3.

Table 1: Equal error rates for different features

Features EER

F1+F2 0.096
F2+F3 0.105
F1+F2+F3 0.053
F1+F2+BW1+BW2 0.042
F2+F3+BW2+BW3 0.060
F1+F2+F3+BW1+BW2+BW3 | 0.030
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Figure 3: DET plot

As can be seen in Table 1 and Figure 3, using two formant fea-
tures gives the worst performance observed. Using all three for-
mants leads to an improvement. By including the corresponding
formant bandwidths, the equal error rate can be reduced addi-
tionally. The best performance with an equal error rate of 3 %
can be observed using all three formant frequencies and the cor-
responding bandwidths.

The experiment used a relatively small corpus, due to the
amount of manual work which had to be done to exclude mea-
surement errors. As a result, the UBM was only based on 18
speakers, which might not adequately represent a reference pop-
ulation. Experiments with larger numbers of speakers will have
to be done to investigate the impact of the reference population.
The within-speaker variation was included in the models by us-
ing full covariance matrices. This approach differs from Grigo-
ras’ [2] and Rose’s [3], who used univariate density estimations,
bivariate density estimations, and Gaussian distributions. How-
ever, the number of components, as well as the model parameter
estimation, might lead to inadequate representations of the fea-
ture distributions and hence lead to verification errors. Future
experiments should focus on the model generation process, es-
pecially since the model parameters can be related directly to
the speakers’ vocal tract configurations. These should thus be
easier to interpret than, for example, cepstral coefficients which
are used in other automatic approaches.



However, we want to highlight the relation of formant features
and cepstral features. Since, for example, Mel frequency cep-
stral coefficients (MFCCs) represent the spectral envelope of
the signal with little pitch information, they reflect the vocal
tract configurations with its variabilities as well as formant fea-
tures (see, for example, Darch et al.[16] for the relation be-
tween formants and MFCC). While MFCC features were devel-
oped and optimized empirically to discriminate within speak-
ers (automatic speech recognition) and between speakers (auto-
matic speaker recognition), formant features are acoustic corre-
lates of vocal tract cavity resonances. Interpretation of evidence
in terms of speech samples can be related directly to speak-
ers’ anatomical and physiological characteristics when using
formant features, while cepstral coefficients need to be trans-
formed if they should be interpretable in the same way [16].
The all pole model best fits on non-nasalized vowels. However,
cepstral coefficients can be interpreted as model vocal tract res-
onances but do not include a speech production model.

By using GMMs we avoided likelihood ratio combinations from
different distributions, which is a problem recognized in [2] and
[3]. Nevertheless, by looking at the log likelihood ratio value at
the EER (i. e. the likelihood ratio values for all six feature vector
configurations under investigation that gives the EERs), it could
be observed that it ranges from about -100 to -3 (depending on
the features used). This might be caused by modeling inadequa-
cies resulting from practical and numerical problems with pa-
rameter estimations (e. g. model initialization, number of mix-
tures). A stable and robust front-end still has to be found. Also,
comparison with other automatic speaker verification front-ends
will have to be conducted.

We have used a realistic data base by choosing telephone-
transmitted speech of short duration. However, some perfor-
mance degrading influences on the formant features may remain
(for example differences and mismatches in speaking styles),
which have to be carefully addressed in forensic applications.

5. Conclusions

We have provided a new method for speaker verification based
on formant features. In a semi-automatic procedure, those
features were extracted and processed by an automatic UBM-
GMM verification system. This is an extension of the methods
proposed in [1], [2] and [S]. Here, the covariance of formant
features is included in the speaker models. In comparison with
state-of-the-art automatic speaker verification systems, the pro-
posed method has two important advantages. First, the feature
vector space has a small dimensionality (2 to 6). Second, the
speaker models can be related directly to the configuration of
the vocal tract and hence reflect the vocal tract configuration
not only as an average, but also the speaker-specific variations
expressed in the entire distribution.
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